59 research outputs found

    On adaptive robot systems for manufacturing applications

    Get PDF
    System adaptability is very important to current manufacturing practices due to frequent changes in the customer needs. Two basic concepts that can be employed to achieve system adaptability are flexible systems and modular systems. Flexible systems are fixed integral systems with some adjustable components. Adjustable components have limited ranges of parameter changes that can be made, thus restricting the adaptability of systems. Modular systems are composed of a set of pre-existing modules. Usually, the parameters of modules in modular systems are fixed, and thus increased system adaptability is realized only by increasing the number of modules. Increasing the number of modules could result in higher costs, poor positioning accuracy, and low system stiffness in the context of manufacturing applications. In this thesis, a new idea was formulated: a combination of the flexible system and modular system concepts. Systems developed based on this new idea are called adaptive systems. This thesis is focused on adaptive robot systems. An adaptive robot system is such that adaptive components or adjustable parameters are introduced upon the modular architecture of a robot system. This implies that there are two levels to achieve system adaptability: the level where a set of modules is appropriately assembled and the level where adjustable components or parameters are specified. Four main contributions were developed in this thesis study. First, a General Architecture of Modular Robots (GAMR) was developed. The starting point was to define the architecture of adaptive robot systems to have as many configuration variations as possible. A novel application of the Axiomatic Design Theory (ADT) was applied to GAMR development. It was found that GAMR was the one with the most coverage, and with a judicious definition of adjustable parameters. Second, a system called Automatic Kinematic and Dynamic Analysis (AKDA) was developed. This system was a foundation for synthesis of adaptive robot configurations. In comparison with the existing approach, the proposed approach has achieved systemization, generality, flexibility, and completeness. Third, this thesis research has developed a finding that in modular system design, simultaneous consideration of both kinematic and dynamic behaviors is a necessary step, owing to a strong coupling between design variables and system behaviors. Based on this finding, a method for simultaneous consideration of type synthesis, number synthesis, and dimension synthesis was developed. Fourth, an adaptive modular Parallel Kinematic Machine (PKM) was developed to demonstrate the benefits of adaptive robot systems in parallel kinematic machines, which have found many applications in machine tool industries. In this architecture, actuators and limbs were modularized, while the platforms were adjustable in such a way that both the joint positions and orientations on the platforms can be changed

    Smart Manufacturing—Theories, Methods, and Applications

    Get PDF
    (First paragraph) Smart manufacturing (SM) distinguishes itself from other system paradigms by introducing ‘smartness’ as a measure to a manufacturing system; however, researchers in different domains have different expectations of system smartness from their own perspectives. In this Special Issue (SI), SM refers to a system paradigm where digital technologies are deployed to enhance system smartness by (1) empowering physical resources in production, (2) utilizing virtual and dynamic assets over the internet to expand system capabilities, (3) supporting data-driven decision making at all domains and levels of businesses, or (4) reconfiguring systems to adapt changes and uncertainties in dynamic environments. System smartness is measured by one or a combination of system performance metrics, such as the degree of automation, cost-effectiveness, leanness, robustness, flexibility, adaptability, sustainability, and resilience. This SI aims to present the most representative works in advancing the theories, methods, and applications of SM

    Applications of Blockchain in Business Processes: A Comprehensive Review

    Get PDF
    Blockchain (BC), as an emerging technology, is revolutionizing Business Process Management (BPM) in multiple ways. The main adoption is to serve as a trusted infrastructure to guarantee the trust of collaborations among multiple partners in trustless environments. Especially, BC enables trust of information by using Distributed Ledger Technology (DLT). With the power of smart contracts, BC enforces the obligations of counterparties that transact in a business process (BP) by programming the contracts as transactions. This paper aims to study the state-of-the-art of BC technologies by (1) exploring its applications in BPM with the focus on how BC provides the trust of BPs in their lifecycles; (2) identifying the relations of BPM as the need and BC as the solution with the assessment towards BPM characteristics; (3) discussing the up-to-date progresses of critical BC in BPM; (4) identifying the challenges and research directions for future advancement in the domain. The main conclusions of our comprehensive review are (1) the study of adopting BC in BPM has attracted a great deal of attention that has been evidenced by a rapidly growing number of relevant articles. (2) The paradigms of BPM over Internet of Things (IoT) have been shifted from persistent to transient, from static to dynamic, and from centralized to decentralized, and new enabling technologies are highly demanded to fulfill some emerging functional requirements (FRs) at the stages of design, configuration, diagnosis, and evaluation of BPs in their lifecycles. (3) BC has been intensively studied and proven as a promising solution to assure the trustiness for both of business processes and their executions in decentralized BPM. (4) Most of the reported BC applications are at their primary stages, future research efforts are needed to meet the technical challenges involved in interoperation, determination of trusted entities, confirmation of time-sensitive execution, and support of irreversibility

    Generic Design Methodology for Smart Manufacturing Systems from a Practical Perspective, Part I—Digital Triad Concept and Its Application as a System Reference Model

    Get PDF
    Rapidly developed information technologies (IT) have continuously empowered manufacturing systems and accelerated the evolution of manufacturing system paradigms, and smart manufacturing (SM) has become one of the most promising paradigms. The study of SM has attracted a great deal of attention for researchers in academia and practitioners in industry. However, an obvious fact is that people with different backgrounds have different expectations for SM, and this has led to high diversity, ambiguity, and inconsistency in terms of definitions, reference models, performance matrices, and system design methodologies. It has been found that the state of the art SM research is limited in two aspects: (1) the highly diversified understandings of SM may lead to overlapped, missed, and non-systematic research efforts in advancing the theory and methodologies in the field of SM; (2) few works have been found that focus on the development of generic design methodologies for smart manufacturing systems from the practice perspective. The novelty of this paper consists of two main aspects which are reported in two parts respectively. In the first part, a simplified definition of SM is proposed to unify the existing diversified expectations, and a newly developed concept named digital triad (DT-II) is adopted to define a reference model for SM. The common features of smart manufacturing systems in various applications are identified as functional requirements (FRs) in systems design. To model a system that is capable of reconfiguring itself to adapt to changes, the concept of IoDTT is proposed as a reference model for smart manufacturing systems. In the second part, these two concepts are used to formulate a system design problem, and a generic methodology, based on axiomatic design theory (ADT), is proposed for the design of smart manufacturing systems

    Generic Design Methodology for Smart Manufacturing Systems From a Practical Perspective. Part II—Systematic Designs of Smart Manufacturing Systems

    Get PDF
    In a traditional system paradigm, an enterprise reference model provides the guide for practitioners to select manufacturing elements, configure elements into a manufacturing system, and model system options for evaluation and comparison of system solutions against given performance metrics. However, a smart manufacturing system aims to reconfigure different systems in achieving high-level smartness in its system lifecycle; moreover, each smart system is customized in terms of the constraints of manufacturing resources and the prioritized performance metrics to achieve system smartness. Few works were found on the development of systematic methodologies for the design of smart manufacturing systems. The novel contributions of the presented work are at two aspects: (1) unified definitions of digital functional elements and manufacturing systems have been proposed; they are generalized to have all digitized characteristics and they are customizable to any manufacturing system with specified manufacturing resources and goals of smartness and (2) a systematic design methodology has been proposed; it can serve as the guide for designs of smart manufacturing systems in specified applications. The presented work consists of two separated parts. In the first part of paper, a simplified definition of smart manufacturing (SM) is proposed to unify the diversified expectations and a newly developed concept digital triad (DT-II) is adopted to define a generic reference model to represent essential features of smart manufacturing systems. In the second part of the paper, the axiomatic design theory (ADT) is adopted and expanded as the generic design methodology for design, analysis, and assessment of smart manufacturing systems. Three case studies are reviewed to illustrate the applications of the proposed methodology, and the future research directions towards smart manufacturing are discussed as a summary in the second part

    Formulation and Validation of Multidisciplinary Design Problem on Wear and Fatigue Life of Lead Screw Actuators

    Get PDF
    Multidisciplinary design optimization has been widely applied in the optimization of large-scale complex system and also in the design and optimization of components, which are involved in multidisciplinary behaviors. The wear and fatigue life of lead screw actuators is a typical multidisciplinary problem. The wear behaviors of actuators closely relate to many factors such as loads, lubrications, materials properties, surface properties, pressures, and temperature. Therefore, the wear and fatigue life of actuators cannot be modeled without a simultaneous consideration of solid mechanics, fluid dynamics, contact mechanics, and thermal dynamics. In this paper, the wear and fatigue life of a lead screw actuator is modeled and validated. Firstly, the theory of asperity contact and Archard’s model of sliding wear are applied to estimate the amount of wear under certain circumstances. Secondly, a test platform is developed based on a standard ASTM test protocol, and the wear phenomenon at the ball-on-flat sliding is measured to validate the developed wear model. Thirdly, finite element analysis is conducted using Nastran to assess the contact stresses in the lead screw and nut assembly model. The estimated data from the three sources are finally merged to formulate a mathematical model in predicting the wear and fatigue life for the optimization of lead screw actuators

    The State of the Art of Information Integration in Space Applications

    Get PDF
    This paper aims to present a comprehensive survey on information integration (II) in space informatics. With an ever-increasing scale and dynamics of complex space systems, II has become essential in dealing with the complexity, changes, dynamics, and uncertainties of space systems. The applications of space II (SII) require addressing some distinctive functional requirements (FRs) of heterogeneity, networking, communication, security, latency, and resilience; while limited works are available to examine recent advances of SII thoroughly. This survey helps to gain the understanding of the state of the art of SII in sense that (1) technical drivers for SII are discussed and classified; (2) existing works in space system development are analyzed in terms of their contributions to space economy, divisions, activities, and missions; (3) enabling space information technologies are explored at aspects of sensing, communication, networking, data analysis, and system integration; (4) the importance of first-time right (FTR) for implementation of a space system is emphasized, the limitations of digital twin (DT-I) as technological enablers are discussed, and a concept digital-triad (DT-II) is introduced as an information platform to overcome these limitations with a list of fundamental design principles; (5) the research challenges and opportunities are discussed to promote SII and advance space informatics in future

    Advanced Mechatronics and MEMS Devices

    No full text

    Smart Manufacturing—Theories, Methods, and Applications

    No full text
    Smart manufacturing (SM) distinguishes itself from other system paradigms by introducing ‘smartness’ as a measure to a manufacturing system; however, researchers in different domains have different expectations of system smartness from their own perspectives [...
    • …
    corecore